Development of a new suspension electrolyte based on methane-sulphonic acid for the electrodeposition of Cu–TiO2 composites

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.224224

Abstract

Electrodeposition of composite coatings based on copper is a promising direction in the creation of advanced materials for multifunctional purposes. An important area of composites application is to use them in the treatment systems for gas emissions and wastewater. It is advisable to use semiconductor oxide materials, in particular titanium dioxide, as the photocatalysts in the photo destruction of organic pollutants of wastewater. The structural features of wastewater treatment equipment require that titanium dioxide particles should be fixed in a rigid matrix. Resolving the task of fixing photosensitive elements at the surface of a certain configuration implies the electrodeposition of coatings by composites, in particular Cu–TiO2. An important factor affecting the functional characteristics of composites and their manufacturing technology is the nature of the electrolyte. It has been shown that the electrodeposition of Cu–TiO2 composites from methane-sulfonate electrolytes makes it possible to reduce the coagulation of the dispersed phase and to obtain coatings with a high content of titanium dioxide from a suspension solution containing no more than 4 g/l of TiO2. It was established that the content of the dispersed phase in the composite made at a current density of 2 A/dm2 and the concentration of titanium dioxide in the electrolyte at the level of 4 g/l is 1.3 % by weight, which is twice as much as when using a sulfate electrolyte. It has been shown that the increase in the content of the dispersed phase in the coatings from 0.1 to 1.3 % by weight is accompanied by an increase in the degree of photo destruction of the colorant from 6 to 15.5 %. The micro-hardness of coatings increases, in this case, by 30 %. The proposed electrolyte to make the Cu–TiO2 composites is an important contribution to the development of the synthesis of wear-resistant high-performance photocatalysts for treating wastewater from organic pollutants

Author Biographies

Irina Sknar, Ukrainian State University of Chemical Technology

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Yuri Sknar, Ukrainian State University of Chemical Technology

Doctor of Chemical Sciences, Professor

Department of Processes, Apparatus and General Chemical Technology

Tatyana Hrydnieva, Ukrainian State University of Chemical Technology

PhD, Senior Lecturer

Department of Processes, Apparatus and General Chemical Technology

Pavel Riabik, Ukrainian State University of Chemical Technology

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Oksana Demchyshyna, Kryvyi Rih National University

PhD, Associate Professor

Department of Mineral Processing and Chemistry

Dmitriy Gerasimenko, Dnipro National University of Railway Transport named after Academician V. Lazaryan

Assistant

Department of Physics

References

  1. Obinna, I. B., Ebere, E. C. (2019). A review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. Analytical Methods in Environmental Chemistry Journal, 2 (03), 5–38. doi: https://doi.org/10.24200/amecj.v2.i03.66
  2. Sharma, S., Bhattacharya, A. (2016). Drinking water contamination and treatment techniques. Applied Water Science, 7 (3), 1043–1067. doi: https://doi.org/10.1007/s13201-016-0455-7
  3. Teoh, W. Y., Scott, J. A., Amal, R. (2012). Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. The Journal of Physical Chemistry Letters, 3 (5), 629–639. doi: https://doi.org/10.1021/jz3000646
  4. Argurio, P., Fontananova, E., Molinari, R., Drioli, E. (2018). Photocatalytic Membranes in Photocatalytic Membrane Reactors. Processes, 6 (9), 162. doi: https://doi.org/10.3390/pr6090162
  5. Gupta, S., Tripathi, M. (2012). A review on the synthesis of TiO2 nanoparticles by solution route. Open Chemistry, 10 (2), 279–294. doi: https://doi.org/10.2478/s11532-011-0155-y
  6. Rasalingam, S., Peng, R., Koodali, R. T. (2014). Removal of Hazardous Pollutants from Wastewaters: Applications of TiO2-SiO2 Mixed Oxide Materials. Journal of Nanomaterials, 2014, 1–42. doi: https://doi.org/10.1155/2014/617405
  7. Gupta, V. K., Jain, R., Nayak, A., Agarwal, S., Shrivastava, M. (2011). Removal of the hazardous dye – Tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering: C, 31 (5), 1062–1067. doi: https://doi.org/10.1016/j.msec.2011.03.006
  8. Davis, R. J., Gainer, J. L., O'Neal, G., Wu, I.-W. (1994). Photocatalytic decolorization of wastewater dyes. Water Environment Research, 66 (1), 50–53. doi: https://doi.org/10.2175/wer.66.1.8
  9. Aruna, S. T., Muniprakash, M., William Grips, V. K. (2013). Effect of titania particles preparation on the properties of Ni–TiO2 electrodeposited composite coatings. Journal of Applied Electrochemistry, 43 (8), 805–815. doi: https://doi.org/10.1007/s10800-013-0565-y
  10. Mohajeri, S., Dolati, A., Ghorbani, M. (2015). The influence of pulse plating parameters on the electrocodeposition of Ni-TiO2 nanocomposite single layer and multilayer structures on copper substrates. Surface and Coatings Technology, 262, 173–183. doi: https://doi.org/10.1016/j.surfcoat.2014.12.042
  11. Wang, J., Xu, R., Zhang, Y. (2012). Study on characteristics of Ni-W-B composites containing CeO2 nano-particles prepared by pulse electrodeposition. Journal of Rare Earths, 30 (1), 43–47. doi: https://doi.org/10.1016/s1002-0721(10)60636-9
  12. Berçot, P., Peña-Muñoz, E., Pagetti, J. (2002). Electrolytic composite Ni–PTFE coatings: an adaptation of Guglielmi's model for the phenomena of incorporation. Surface and Coatings Technology, 157 (2-3), 282–289. doi: https://doi.org/10.1016/s0257-8972(02)00180-9
  13. Khorashadizade, F., Saghafian, H., Rastegari, S. (2019). Effect of electrodeposition parameters on the microstructure and properties of Cu-TiO2 nanocomposite coating. Journal of Alloys and Compounds, 770, 98–107. doi: https://doi.org/10.1016/j.jallcom.2018.08.020
  14. Gomes, A., da Silva Pereira, M. I., Mendonça, M. H., Costa, F. M. (2004). Zn–TiO2 composite films prepared by pulsed electrodeposition. Journal of Solid State Electrochemistry, 9 (4), 190–196. doi: https://doi.org/10.1007/s10008-004-0573-2
  15. Lajevardi, S. A., Shahrabi, T. (2010). Effects of pulse electrodeposition parameters on the properties of Ni–TiO2 nanocomposite coatings. Applied Surface Science, 256 (22), 6775–6781. doi: https://doi.org/10.1016/j.apsusc.2010.04.088
  16. Sknar, Yu. E., Savchuk, O. O., Sknar, I. V., Danilov, F. I. (2017). Properties of Ni-TiO2 composites electrodeposited from methanesulfonate electrolyte. Functional Materials, 24 (3), 469–475. doi: https://doi.org/10.15407/fm24.03.469
  17. Carp, O., Huisman, C. L., Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32 (1-2), 33–177. doi: https://doi.org/10.1016/j.progsolidstchem.2004.08.001
  18. Warrier, K. G. K., Rohatgi, P. K. (1986). Mechanical, Electrical, and Electrical Contact Properties of Cu–TiO2 Composites. Powder Metallurgy, 29 (1), 65–69. doi: https://doi.org/10.1179/pom.1986.29.1.65
  19. Sknar, I., Petrenko, L., Cheremysinova, A., Plyasovskaya, K., Kozlov, Y., Amirulloeva, N. (2017). Investigation of adsorption behavior of smoothing additives in copper plating electrolytes. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 43–49. doi: https://doi.org/10.15587/1729-4061.2017.95724
  20. Moghanian, A., Sharifianjazi, F., Abachi, P., Sadeghi, E., Jafarikhorami, H., Sedghi, A. (2017). Production and properties of Cu/TiO 2 nano-composites. Journal of Alloys and Compounds, 698, 518–524. doi: https://doi.org/10.1016/j.jallcom.2016.12.180
  21. Fawzy, M. H., Ashour, M. M., El-Halim, A. M. A. (1995). Effect of Some Operating Variables on the Characteristics of Electrodeposited Cu-α-Al2O3and Cu-TiO2Composites. Transactions of the IMF, 73 (4), 132–138. doi: https://doi.org/10.1080/00202967.1995.11871075
  22. Iticescu, C., Carac, G., Mitoseriu, O., Lampkt, T. (2008). Electrochemical deposition of composite coatings in copper matrix with TiO2 nanoparticles. Revue Roumaine de Chimie, 53 (1), 43–47.
  23. Ramalingam, S., Muralidharan, V. S., Subramania, A. (2009). Electrodeposition and characterization of Cu-TiO2 nanocomposite coatings. Journal of Solid State Electrochemistry, 13 (11), 1777–1783. doi: https://doi.org/10.1007/s10008-009-0870-x
  24. Ning, D., Zhang, A., Wu, H. (2019). Cu-TiO2 composites with high incorporated and uniform distributed TiO2 particles prepared by jet electrodeposition. Surface Engineering, 35 (12), 1048–1054. doi: https://doi.org/10.1080/02670844.2019.1598024
  25. Ning, D., Zhang, A., Murtaza, M., Wu, H. (2019). Effect of surfactants on the electrodeposition of Cu-TiO2 composite coatings prepared by jet electrodeposition. Journal of Alloys and Compounds, 777, 1245–1250. doi: https://doi.org/10.1016/j.jallcom.2018.11.077
  26. Sknar, Y. E., Amirulloeva, N. V., Sknar, I. V., Danylov, F. I. (2016). Electrodeposition of Ni–ZrO2 Nanocomposites from Methanesulfonate Electrolytes. Materials Science, 51 (6), 877–884. doi: https://doi.org/10.1007/s11003-016-9916-2
  27. Sknar, Y. E., Amirulloeva, N. V., Sknar, I. V., Danylov, F. I. (2016). Influence of Methylsulfonate Anions on the Structure of Electrolytic Cobalt Coatings. Materials Science, 52 (3), 396–401. doi: https://doi.org/10.1007/s11003-016-9970-9
  28. Sknar, Y., Sknar, I., Cheremysinova, A., Yermolenko, I., Karakurkchi, A., Mizin, V. et. al. (2017). Research into composition and properties of the Ni–Fe electrolytic alloy. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 4–10. doi: https://doi.org/10.15587/1729-4061.2017.106864
  29. Danilov, F. I., Sknar, Y. E., Tkach, I. G., Sknar, I. V. (2015). Electrodeposition of nickel-based nanocomposite coatings from cerium(III)-ion-containing methanesulfonate electrolytes. Russian Journal of Electrochemistry, 51 (4), 294–298. doi: https://doi.org/10.1134/s1023193515040023
  30. Sknar, I. V., Sknar, Yu. E., Savchuk, O. O., Baskevich, A. S., Kozhura, O., Hrydnieva, T. V. (2020). Electrodeposition of copper from a methanesulphonate electrolyte. Journal of chemistry and technologies, 28 (1), 1–9. doi: https://doi.org/10.15421/082001
  31. Ohtani, B., Prieto-Mahaney, O. O., Li, D., Abe, R. (2010). What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry, 216 (2-3), 179–182. doi: https://doi.org/10.1016/j.jphotochem.2010.07.024
  32. Mikhailov, I. F., Baturin, A. A., Mikhailov, A. I., Fomina, L. P. (2016). Perspectives of development of X-ray analysis for material composition. Functional Materials, 23 (1), 5–14. doi: https://doi.org/10.15407/fm23.01.005
  33. Baranova, V. I., Bibik, E. E., Kozhevnikova, N. M., Malov, V. A. (1989). Raschety i zadachi po kolloidnoy himii. Moscow: Vysshaya shkola, 286.
  34. Mahlambi, M. M., Mishra, A. K., Mishra, S. B., Raichur, A. M., Mamba, B. B., Krause, R. W. (2012). Layer-by-layer self-assembled metal-ion- (Ag-, Co-, Ni-, and Pd-) doped TiO2 nanoparticles: synthesis, characterisation, and visible light degradation of Rhodamine B. Journal of Nanomaterials, 2012, 1–12. doi: https://doi.org/10.1155/2012/302046

Downloads

Published

2021-02-10

How to Cite

Sknar, I., Sknar, Y., Hrydnieva, T., Riabik, P., Demchyshyna, O., & Gerasimenko, D. (2021). Development of a new suspension electrolyte based on methane-sulphonic acid for the electrodeposition of Cu–TiO2 composites. Eastern-European Journal of Enterprise Technologies, 1(6 (109), 39–47. https://doi.org/10.15587/1729-4061.2021.224224

Issue

Section

Technology organic and inorganic substances